prismlearning.academy Logo
NEUR
N

Which of the following expressions is equivalent to \((\frac{1}{2}\mathrm{x} + 2)^2 - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)?

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
MEDIUM
...
...
Notes
Post a Query

Which of the following expressions is equivalent to \((\frac{1}{2}\mathrm{x} + 2)^2 - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)?

A

\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)

B

\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)

C

\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)

D

\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)

Solution

1. INFER the solution strategy

  • The expression has a squared binomial that needs expanding, followed by polynomial subtraction
  • Approach: Expand first, then subtract, then combine like terms

2. SIMPLIFY by expanding the binomial

  • Use the formula \((\mathrm{a} + \mathrm{b})^2 = \mathrm{a}^2 + 2\mathrm{ab} + \mathrm{b}^2\) where \(\mathrm{a} = \frac{1}{2}\mathrm{x}\) and \(\mathrm{b} = 2\):
    • \((\frac{1}{2}\mathrm{x})^2 = \frac{1}{4}\mathrm{x}^2\)
    • \(2(\frac{1}{2}\mathrm{x})(2) = 2\mathrm{x}\)
    • \(2^2 = 4\)
  • So \((\frac{1}{2}\mathrm{x} + 2)^2 = \frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4\)

3. SIMPLIFY the subtraction by distributing the negative

  • Original: \((\frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4) - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)
  • Distribute the negative: \((\frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4) + (-\mathrm{x}^2 + 3\mathrm{x} - \frac{1}{2})\)

4. SIMPLIFY by combining like terms

  • \(\mathrm{x}^2\) terms: \(\frac{1}{4}\mathrm{x}^2 - \mathrm{x}^2 = \frac{1}{4}\mathrm{x}^2 - \frac{4}{4}\mathrm{x}^2 = -\frac{3}{4}\mathrm{x}^2\)
  • \(\mathrm{x}\) terms: \(2\mathrm{x} + 3\mathrm{x} = 5\mathrm{x}\)
  • Constants: \(4 - \frac{1}{2} = \frac{8}{2} - \frac{1}{2} = \frac{7}{2}\)

Answer: D. \(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)


Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY execution: Students make arithmetic errors with fractions, particularly when subtracting \(\mathrm{x}^2\) coefficients. They might incorrectly calculate \(\frac{1}{4} - 1\) as \(\frac{1}{4}\) or get confused converting \(1\) to \(\frac{4}{4}\).

This leads to getting positive \(\frac{1}{4}\mathrm{x}^2\) or \(\frac{5}{4}\mathrm{x}^2\) instead of the correct \(-\frac{3}{4}\mathrm{x}^2\), causing them to select Choice B (\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)) or Choice C (\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)).

Second Most Common Error:

Poor SIMPLIFY reasoning: Students incorrectly handle the constant terms when subtracting, getting \(4 - \frac{1}{2} = \frac{9}{2}\) instead of \(\frac{7}{2}\). They might subtract incorrectly or forget to convert \(4\) to eighths.

This may lead them to select Choice A (\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)) with the wrong constant term.

The Bottom Line:

This problem tests systematic algebraic manipulation skills. Success requires careful fraction arithmetic and methodical combining of like terms - areas where small calculation errors can lead to wrong answer choices.

Answer Choices Explained
A

\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)

B

\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)

C

\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)

D

\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)

Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.