Which of the following expressions is equivalent to \((\frac{1}{2}\mathrm{x} + 2)^2 - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)?
GMAT Advanced Math : (Adv_Math) Questions
Which of the following expressions is equivalent to \((\frac{1}{2}\mathrm{x} + 2)^2 - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)?
\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)
\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)
\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)
\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)
1. INFER the solution strategy
- The expression has a squared binomial that needs expanding, followed by polynomial subtraction
- Approach: Expand first, then subtract, then combine like terms
2. SIMPLIFY by expanding the binomial
- Use the formula \((\mathrm{a} + \mathrm{b})^2 = \mathrm{a}^2 + 2\mathrm{ab} + \mathrm{b}^2\) where \(\mathrm{a} = \frac{1}{2}\mathrm{x}\) and \(\mathrm{b} = 2\):
- \((\frac{1}{2}\mathrm{x})^2 = \frac{1}{4}\mathrm{x}^2\)
- \(2(\frac{1}{2}\mathrm{x})(2) = 2\mathrm{x}\)
- \(2^2 = 4\)
- So \((\frac{1}{2}\mathrm{x} + 2)^2 = \frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4\)
3. SIMPLIFY the subtraction by distributing the negative
- Original: \((\frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4) - (\mathrm{x}^2 - 3\mathrm{x} + \frac{1}{2})\)
- Distribute the negative: \((\frac{1}{4}\mathrm{x}^2 + 2\mathrm{x} + 4) + (-\mathrm{x}^2 + 3\mathrm{x} - \frac{1}{2})\)
4. SIMPLIFY by combining like terms
- \(\mathrm{x}^2\) terms: \(\frac{1}{4}\mathrm{x}^2 - \mathrm{x}^2 = \frac{1}{4}\mathrm{x}^2 - \frac{4}{4}\mathrm{x}^2 = -\frac{3}{4}\mathrm{x}^2\)
- \(\mathrm{x}\) terms: \(2\mathrm{x} + 3\mathrm{x} = 5\mathrm{x}\)
- Constants: \(4 - \frac{1}{2} = \frac{8}{2} - \frac{1}{2} = \frac{7}{2}\)
Answer: D. \(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution: Students make arithmetic errors with fractions, particularly when subtracting \(\mathrm{x}^2\) coefficients. They might incorrectly calculate \(\frac{1}{4} - 1\) as \(\frac{1}{4}\) or get confused converting \(1\) to \(\frac{4}{4}\).
This leads to getting positive \(\frac{1}{4}\mathrm{x}^2\) or \(\frac{5}{4}\mathrm{x}^2\) instead of the correct \(-\frac{3}{4}\mathrm{x}^2\), causing them to select Choice B (\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)) or Choice C (\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)).
Second Most Common Error:
Poor SIMPLIFY reasoning: Students incorrectly handle the constant terms when subtracting, getting \(4 - \frac{1}{2} = \frac{9}{2}\) instead of \(\frac{7}{2}\). They might subtract incorrectly or forget to convert \(4\) to eighths.
This may lead them to select Choice A (\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)) with the wrong constant term.
The Bottom Line:
This problem tests systematic algebraic manipulation skills. Success requires careful fraction arithmetic and methodical combining of like terms - areas where small calculation errors can lead to wrong answer choices.
\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{9}{2}\)
\(\frac{5}{4}\mathrm{x}^2 - \mathrm{x} + \frac{9}{2}\)
\(\frac{5}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)
\(-\frac{3}{4}\mathrm{x}^2 + 5\mathrm{x} + \frac{7}{2}\)