prismlearning.academy Logo
NEUR
N

Which of the following is an equivalent form of \((2\mathrm{x} - 1.5)^2 + (0.5\mathrm{x}^2 - 2.5)\)?

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
MEDIUM
...
...
Notes
Post a Query

Which of the following is an equivalent form of \((2\mathrm{x} - 1.5)^2 + (0.5\mathrm{x}^2 - 2.5)\)?

A
\(4\mathrm{x}^2 - 6\mathrm{x} - 0.25\)
B
\(4\mathrm{x}^2 - 6\mathrm{x} + 2.25\)
C
\(4.5\mathrm{x}^2 - 6\mathrm{x} - 0.25\)
D
\(4.5\mathrm{x}^2 - 6\mathrm{x} + 0.25\)
Solution

1. INFER the solution strategy

  • This problem asks for an equivalent form, which means we need to expand and simplify
  • We have a binomial square plus another polynomial expression
  • Strategy: Expand the square first, then combine all like terms

2. SIMPLIFY the binomial square \((2\mathrm{x} - 1.5)²\)

  • Use the formula \((\mathrm{a} - \mathrm{b})² = \mathrm{a}² - 2\mathrm{ab} + \mathrm{b}²\)
  • \((2\mathrm{x} - 1.5)² = (2\mathrm{x})² - 2(2\mathrm{x})(1.5) + (1.5)²\)
  • \(= 4\mathrm{x}² - 6\mathrm{x} + 2.25\)

3. SIMPLIFY by adding the second polynomial

  • Now we have: \(4\mathrm{x}² - 6\mathrm{x} + 2.25 + 0.5\mathrm{x}² - 2.5\)
  • Rewrite to group like terms: \(4\mathrm{x}² + 0.5\mathrm{x}² - 6\mathrm{x} + 2.25 - 2.5\)

4. SIMPLIFY by combining like terms

  • x² terms: \(4\mathrm{x}² + 0.5\mathrm{x}² = 4.5\mathrm{x}²\)
  • x terms: \(-6\mathrm{x}\) (only one x term)
  • Constants: \(2.25 - 2.5 = -0.25\)

Answer: C. \(4.5\mathrm{x}² - 6\mathrm{x} - 0.25\)




Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY execution: Students correctly expand \((2\mathrm{x} - 1.5)²\) to get \(4\mathrm{x}² - 6\mathrm{x} + 2.25\), but forget to include the \(0.5\mathrm{x}²\) term when combining like terms.

They focus only on the expanded binomial and the constant -2.5, getting:
\(4\mathrm{x}² - 6\mathrm{x} + 2.25 - 2.5 = 4\mathrm{x}² - 6\mathrm{x} - 0.25\)

This leads them to select Choice A (\(4\mathrm{x}² - 6\mathrm{x} - 0.25\))

Second Most Common Error:

Poor SIMPLIFY execution with decimal arithmetic: Students make sign errors when combining the constant terms, especially getting confused with 2.25 - 2.5.

Some students might calculate \(2.25 - 2.5 = +0.25\) instead of \(-0.25\), or make other decimal calculation mistakes.

This may lead them to select Choice D (\(4.5\mathrm{x}² - 6\mathrm{x} + 0.25\)) if they get the x² terms right but mess up the constant.

The Bottom Line:

This problem tests careful algebraic manipulation with decimals. Success requires systematically expanding the binomial, then methodically combining ALL like terms without losing track of any pieces of the expression.

Answer Choices Explained
A
\(4\mathrm{x}^2 - 6\mathrm{x} - 0.25\)
B
\(4\mathrm{x}^2 - 6\mathrm{x} + 2.25\)
C
\(4.5\mathrm{x}^2 - 6\mathrm{x} - 0.25\)
D
\(4.5\mathrm{x}^2 - 6\mathrm{x} + 0.25\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.