\((2\mathrm{x} + 3) - (\mathrm{x} - 7)\) Which of the following is equivalent to the given expression?...
GMAT Advanced Math : (Adv_Math) Questions
\((2\mathrm{x} + 3) - (\mathrm{x} - 7)\)
Which of the following is equivalent to the given expression?
1. INFER the approach needed
- We have an expression with subtraction of a binomial: \((2\mathrm{x} + 3) - (\mathrm{x} - 7)\)
- Strategy: First distribute the negative sign, then combine like terms
2. SIMPLIFY by distributing the negative sign
- \((2\mathrm{x} + 3) - (\mathrm{x} - 7)\) becomes \((2\mathrm{x} + 3) - \mathrm{x} + 7\)
- Key insight: The negative sign in front of \((\mathrm{x} - 7)\) affects both terms inside the parentheses
- So \(-(\mathrm{x} - 7) = -\mathrm{x} - (-7) = -\mathrm{x} + 7\)
3. SIMPLIFY by rearranging and combining like terms
- Rearrange: \((2\mathrm{x} + 3) - \mathrm{x} + 7 = 2\mathrm{x} - \mathrm{x} + 3 + 7\)
- Combine x terms: \(2\mathrm{x} - \mathrm{x} = \mathrm{x}\)
- Combine constant terms: \(3 + 7 = 10\)
- Final result: \(\mathrm{x} + 10\)
Answer: C. x + 10
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution: Students incorrectly distribute the negative sign, treating \(-(\mathrm{x} - 7)\) as just \(-\mathrm{x} - 7\) instead of \(-\mathrm{x} + 7\).
When they write \((2\mathrm{x} + 3) - (\mathrm{x} - 7)\) as \((2\mathrm{x} + 3) - \mathrm{x} - 7\), they get:
\(2\mathrm{x} - \mathrm{x} + 3 - 7 = \mathrm{x} - 4\)
This leads them to select Choice A (x - 4).
Second Most Common Error:
Poor INFER reasoning: Students misinterpret the subtraction and add the second expression instead of subtracting it.
They treat the problem as \((2\mathrm{x} + 3) + (\mathrm{x} - 7)\), giving them:
\(2\mathrm{x} + \mathrm{x} + 3 - 7 = 3\mathrm{x} - 4\)
This causes them to select Choice B (3x - 4).
The Bottom Line:
The key challenge is correctly handling the negative sign when subtracting a binomial. Students must remember that subtracting \((\mathrm{x} - 7)\) means adding its opposite, which is \(-\mathrm{x} + 7\), not \(-\mathrm{x} - 7\).