Which expression is equivalent to 3/(3x - 1) - 1/(x + 2)?
GMAT Advanced Math : (Adv_Math) Questions
Which expression is equivalent to \(\frac{3}{3\mathrm{x} - 1} - \frac{1}{\mathrm{x} + 2}\)?
\(\frac{2}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{5}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{7}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{8}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
1. INFER the approach needed
- Given: \(\frac{3}{3\mathrm{x} - 1} - \frac{1}{\mathrm{x} + 2}\)
- Key insight: To subtract rational expressions, we need a common denominator
- The common denominator will be the product of both denominators: \((3\mathrm{x} - 1)(\mathrm{x} + 2)\)
2. SIMPLIFY by converting to common denominators
- First fraction: \(\frac{3}{3\mathrm{x} - 1} = \frac{3(\mathrm{x} + 2)}{(3\mathrm{x} - 1)(\mathrm{x} + 2)}\)
- Second fraction: \(\frac{1}{\mathrm{x} + 2} = \frac{1(3\mathrm{x} - 1)}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
- Now we have: \(\frac{3(\mathrm{x} + 2)}{(3\mathrm{x} - 1)(\mathrm{x} + 2)} - \frac{1(3\mathrm{x} - 1)}{(3\mathrm{x} - 1)(\mathrm{x} + 2)}\)
3. SIMPLIFY by subtracting the numerators
- Combine: \(\frac{3(\mathrm{x} + 2) - 1(3\mathrm{x} - 1)}{(3\mathrm{x} - 1)(\mathrm{x} + 2)}\)
- Expand the numerator:
- \(3(\mathrm{x} + 2) = 3\mathrm{x} + 6\)
- \(1(3\mathrm{x} - 1) = 3\mathrm{x} - 1\)
- Substitute: \(\frac{3\mathrm{x} + 6 - (3\mathrm{x} - 1)}{(3\mathrm{x} - 1)(\mathrm{x} + 2)}\)
4. SIMPLIFY the final expression
- Distribute the negative sign: \(3\mathrm{x} + 6 - 3\mathrm{x} + 1\)
- Combine like terms: \(3\mathrm{x} - 3\mathrm{x} + 6 + 1 = 7\)
- Final result: \(\frac{7}{(3\mathrm{x} - 1)(\mathrm{x} + 2)}\)
Answer: C. \(\frac{7}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY skill: Students make sign errors when subtracting the second numerator. They may write \([3\mathrm{x} + 6 - 3\mathrm{x} - 1]\) instead of \([3\mathrm{x} + 6 - 3\mathrm{x} + 1]\), forgetting that subtracting \((3\mathrm{x} - 1)\) means subtracting both terms, changing the -1 to +1.
This leads to a final numerator of 5 instead of 7, causing them to select Choice B (\(\frac{5}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)).
Second Most Common Error:
Poor INFER reasoning: Students attempt to subtract the fractions without finding a common denominator first, trying to subtract numerators and denominators separately: \(\frac{3}{3\mathrm{x} - 1} - \frac{1}{\mathrm{x} + 2} = \frac{3-1}{(3\mathrm{x}-1)-(\mathrm{x}+2)}\).
This leads to confusion and an expression that doesn't match any of the given choices, causing them to get stuck and guess randomly.
The Bottom Line:
This problem tests your ability to systematically handle rational expression operations. Success depends on recognizing the need for a common denominator and carefully managing signs during the subtraction process.
\(\frac{2}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{5}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{7}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)
\(\frac{8}{(\mathrm{x} + 2)(3\mathrm{x} - 1)}\)