Which expression is equivalent to \((3\mathrm{x} + 2)^2 - (3\mathrm{x} - 2)^2\)?
GMAT Advanced Math : (Adv_Math) Questions
Which expression is equivalent to \((3\mathrm{x} + 2)^2 - (3\mathrm{x} - 2)^2\)?
\(12\mathrm{x}\)
\(18\mathrm{x}^2 + 8\)
\(24\mathrm{x}\)
\(9\mathrm{x}^2 - 4\)
\(36\mathrm{x}^2 + 16\)
1. TRANSLATE the problem information
- We need to find an expression equivalent to \((3\mathrm{x} + 2)^2 - (3\mathrm{x} - 2)^2\)
- This involves squaring binomials and subtracting
2. INFER the most efficient approach
- Key insight: This has the form \((\mathrm{a} + \mathrm{b})^2 - (\mathrm{a} - \mathrm{b})^2\) where \(\mathrm{a} = 3\mathrm{x}\) and \(\mathrm{b} = 2\)
- We can either use the pattern \((\mathrm{a} + \mathrm{b})^2 - (\mathrm{a} - \mathrm{b})^2 = 4\mathrm{ab}\) or expand directly
- The pattern method is faster, but both work
3. SIMPLIFY using the pattern method
- Apply \((\mathrm{a} + \mathrm{b})^2 - (\mathrm{a} - \mathrm{b})^2 = 4\mathrm{ab}\) with \(\mathrm{a} = 3\mathrm{x}\) and \(\mathrm{b} = 2\)
- Result = \(4(3\mathrm{x})(2) = 24\mathrm{x}\)
Alternative approach: Direct expansion
- \((3\mathrm{x} + 2)^2 = 9\mathrm{x}^2 + 12\mathrm{x} + 4\)
- \((3\mathrm{x} - 2)^2 = 9\mathrm{x}^2 - 12\mathrm{x} + 4\)
- Subtract: \((9\mathrm{x}^2 + 12\mathrm{x} + 4) - (9\mathrm{x}^2 - 12\mathrm{x} + 4) = 24\mathrm{x}\)
Answer: C (\(24\mathrm{x}\))
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution: Students make sign errors when distributing the negative sign during subtraction.
For example, they might write:
\((9\mathrm{x}^2 + 12\mathrm{x} + 4) - (9\mathrm{x}^2 - 12\mathrm{x} + 4) = 9\mathrm{x}^2 + 12\mathrm{x} + 4 - 9\mathrm{x}^2 - 12\mathrm{x} - 4 = 0\)
This incorrect sign handling leads them to get confused and potentially select Choice D (\(9\mathrm{x}^2 - 4\)) by incorrectly applying difference of squares to the original binomials.
Second Most Common Error:
Missing INFER insight: Students don't recognize the efficient pattern and get bogged down in lengthy calculations, making arithmetic mistakes along the way.
Without seeing the \((\mathrm{a} + \mathrm{b})^2 - (\mathrm{a} - \mathrm{b})^2 = 4\mathrm{ab}\) pattern, they may struggle with the expansion and select Choice B (\(18\mathrm{x}^2 + 8\)) from incomplete or incorrect algebraic work.
The Bottom Line:
This problem rewards pattern recognition. Students who spot the \((\mathrm{a} + \mathrm{b})^2 - (\mathrm{a} - \mathrm{b})^2\) structure can solve it in seconds, while those who don't may struggle with error-prone expansions.
\(12\mathrm{x}\)
\(18\mathrm{x}^2 + 8\)
\(24\mathrm{x}\)
\(9\mathrm{x}^2 - 4\)
\(36\mathrm{x}^2 + 16\)