prismlearning.academy Logo
NEUR
N

\((3\mathrm{y}^3 + 2\mathrm{y})(\mathrm{y}^3 - 2\mathrm{y})\)Which of the following is equivalent to the expression above?

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
EASY
...
...
Notes
Post a Query

\((3\mathrm{y}^3 + 2\mathrm{y})(\mathrm{y}^3 - 2\mathrm{y})\)

Which of the following is equivalent to the expression above?

A

\(3\mathrm{y}^6 - 2\mathrm{y}^4 - 4\mathrm{y}^2\)

B

\(3\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\)

C

\(5\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\)

D

\(3\mathrm{y}^6 + 4\mathrm{y}^4 - 4\mathrm{y}^2\)

E

\(3\mathrm{y}^6 - 6\mathrm{y}^4 + 2\mathrm{y}^4 - 4\mathrm{y}^2\)

Solution

1. INFER the approach needed

  • We have two binomials to multiply: \((3\mathrm{y}^3 + 2\mathrm{y})(\mathrm{y}^3 - 2\mathrm{y})\)
  • Strategy: Use the distributive property to multiply each term in the first binomial by each term in the second binomial

2. SIMPLIFY using the distributive property

  • Multiply each term systematically:
    • \(3\mathrm{y}^3 \times \mathrm{y}^3 = 3\mathrm{y}^6\)
    • \(3\mathrm{y}^3 \times (-2\mathrm{y}) = -6\mathrm{y}^4\)
    • \(2\mathrm{y} \times \mathrm{y}^3 = 2\mathrm{y}^4\)
    • \(2\mathrm{y} \times (-2\mathrm{y}) = -4\mathrm{y}^2\)
  • This gives us: \(3\mathrm{y}^6 - 6\mathrm{y}^4 + 2\mathrm{y}^4 - 4\mathrm{y}^2\)

3. SIMPLIFY by combining like terms

  • Identify like terms: \(-6\mathrm{y}^4\) and \(+2\mathrm{y}^4\) both have \(\mathrm{y}^4\)
  • Combine: \(-6\mathrm{y}^4 + 2\mathrm{y}^4 = -4\mathrm{y}^4\)
  • Final result: \(3\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\)

Answer: B (\(3\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\))




Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY execution: Students correctly expand the product but make arithmetic errors when combining like terms.

For example, they might calculate \(-6\mathrm{y}^4 + 2\mathrm{y}^4 = -2\mathrm{y}^4\) instead of \(-4\mathrm{y}^4\). This leads them to select Choice A (\(3\mathrm{y}^6 - 2\mathrm{y}^4 - 4\mathrm{y}^2\)).

Second Most Common Error:

Incomplete SIMPLIFY process: Students expand the binomials correctly but forget to combine like terms completely.

They stop at \(3\mathrm{y}^6 - 6\mathrm{y}^4 + 2\mathrm{y}^4 - 4\mathrm{y}^2\) without combining the middle terms. This leads them to select Choice E (\(3\mathrm{y}^6 - 6\mathrm{y}^4 + 2\mathrm{y}^4 - 4\mathrm{y}^2\)).

The Bottom Line:

This problem tests careful algebraic manipulation. Success requires both systematic expansion and precise arithmetic when combining like terms - two separate skills that both must be executed correctly.

Answer Choices Explained
A

\(3\mathrm{y}^6 - 2\mathrm{y}^4 - 4\mathrm{y}^2\)

B

\(3\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\)

C

\(5\mathrm{y}^6 - 4\mathrm{y}^4 - 4\mathrm{y}^2\)

D

\(3\mathrm{y}^6 + 4\mathrm{y}^4 - 4\mathrm{y}^2\)

E

\(3\mathrm{y}^6 - 6\mathrm{y}^4 + 2\mathrm{y}^4 - 4\mathrm{y}^2\)

Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.