The expression \((4\mathrm{x} - 5)(7\mathrm{x} + 3)\) is equivalent to ax^2 + bx + c, where a, b, and c...
GMAT Advanced Math : (Adv_Math) Questions
The expression \((4\mathrm{x} - 5)(7\mathrm{x} + 3)\) is equivalent to \(\mathrm{ax}^2 + \mathrm{bx} + \mathrm{c}\), where \(\mathrm{a}\), \(\mathrm{b}\), and \(\mathrm{c}\) are constants. What is the value of \(\mathrm{a} + \mathrm{c}\)?
1. TRANSLATE the problem information
- Given information:
- Expression \((4\mathrm{x} - 5)(7\mathrm{x} + 3)\) equals \(\mathrm{ax}^2 + \mathrm{bx} + \mathrm{c}\)
- Need to find \(\mathrm{a} + \mathrm{c}\) (coefficient of x² plus constant term)
- This tells us we need to expand the product and identify specific coefficients
2. SIMPLIFY by expanding the binomial product
- Use FOIL method to multiply \((4\mathrm{x} - 5)(7\mathrm{x} + 3)\):
- First terms: \((4\mathrm{x})(7\mathrm{x}) = 28\mathrm{x}^2\)
- Outer terms: \((4\mathrm{x})(3) = 12\mathrm{x}\)
- Inner terms: \((-5)(7\mathrm{x}) = -35\mathrm{x}\)
- Last terms: \((-5)(3) = -15\)
3. SIMPLIFY by combining like terms
- Combine all terms: \(28\mathrm{x}^2 + 12\mathrm{x} - 35\mathrm{x} - 15\)
- Combine the x terms: \(12\mathrm{x} - 35\mathrm{x} = -23\mathrm{x}\)
- Final expanded form: \(28\mathrm{x}^2 - 23\mathrm{x} - 15\)
4. TRANSLATE coefficients from expanded form
- From \(28\mathrm{x}^2 - 23\mathrm{x} - 15\) compared to \(\mathrm{ax}^2 + \mathrm{bx} + \mathrm{c}\):
- \(\mathrm{a} = 28\) (coefficient of x²)
- \(\mathrm{b} = -23\) (coefficient of x)
- \(\mathrm{c} = -15\) (constant term)
5. Calculate the final answer
- \(\mathrm{a} + \mathrm{c} = 28 + (-15) = 28 - 15 = 13\)
Answer: B) 13
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution: Students make sign errors when combining like terms, particularly with \(12\mathrm{x} - 35\mathrm{x} = -23\mathrm{x}\), or make arithmetic mistakes during FOIL expansion.
Common mistakes include:
- Writing \(12\mathrm{x} - 35\mathrm{x}\) as \(23\mathrm{x}\) instead of \(-23\mathrm{x}\)
- Sign errors like \((-5)(3) = +15\) instead of \(-15\)
- Forgetting negative signs from the original expression
This may lead them to calculate incorrect values for a and c, potentially selecting Choice A (5) or Choice C (28) if they get confused about which coefficients to add.
The Bottom Line:
This problem tests careful algebraic manipulation - success depends on systematic FOIL expansion and meticulous attention to signs when combining terms.