Which of the following is equivalent to the expression \((5\mathrm{x}^2 + 8\mathrm{x} - 3) - (2\mathrm{x}^2 - 4\mathrm{x} + 6)\)?3x^2...
GMAT Advanced Math : (Adv_Math) Questions
- \(3\mathrm{x}^2 + 4\mathrm{x} - 9\)
- \(3\mathrm{x}^2 + 11\mathrm{x} - 9\)
- \(3\mathrm{x}^2 + 12\mathrm{x} - 9\)
- \(7\mathrm{x}^2 + 4\mathrm{x} + 3\)
1. TRANSLATE the problem information
- Given: \((5\mathrm{x}^2 + 8\mathrm{x} - 3) - (2\mathrm{x}^2 - 4\mathrm{x} + 6)\)
- Need to find: The equivalent simplified expression
2. INFER the approach
- Strategy: Distribute the negative sign to remove parentheses, then combine like terms
- Key insight: The subtraction sign applies to every term in the second polynomial
3. SIMPLIFY by distributing the negative sign
Distribute the negative to each term in \((2\mathrm{x}^2 - 4\mathrm{x} + 6)\):
- \((5\mathrm{x}^2 + 8\mathrm{x} - 3) - (2\mathrm{x}^2 - 4\mathrm{x} + 6) = 5\mathrm{x}^2 + 8\mathrm{x} - 3 - 2\mathrm{x}^2 + 4\mathrm{x} - 6\)
- Notice: \(-(-4\mathrm{x})\) becomes \(+4\mathrm{x}\)
4. SIMPLIFY by grouping like terms
Rearrange terms by degree:
- \((5\mathrm{x}^2 - 2\mathrm{x}^2) + (8\mathrm{x} + 4\mathrm{x}) + (-3 - 6)\)
5. SIMPLIFY by combining like terms
- x² terms: \(5\mathrm{x}^2 - 2\mathrm{x}^2 = 3\mathrm{x}^2\)
- x terms: \(8\mathrm{x} + 4\mathrm{x} = 12\mathrm{x}\)
- Constant terms: \(-3 - 6 = -9\)
Answer: C. \(3\mathrm{x}^2 + 12\mathrm{x} - 9\)
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY skill: Sign error when distributing the negative sign
Students often forget that subtracting a negative becomes positive, writing:
\(5\mathrm{x}^2 + 8\mathrm{x} - 3 - 2\mathrm{x}^2 - 4\mathrm{x} - 6\) (incorrect!)
This leads to: \(3\mathrm{x}^2 + 4\mathrm{x} - 9\)
This may lead them to select Choice A (\(3\mathrm{x}^2 + 4\mathrm{x} - 9\))
Second Most Common Error:
Poor SIMPLIFY execution: Arithmetic mistakes when combining coefficients
Students correctly distribute signs but make calculation errors like:
- \(8\mathrm{x} + 4\mathrm{x} = 11\mathrm{x}\) (instead of \(12\mathrm{x}\))
This may lead them to select Choice B (\(3\mathrm{x}^2 + 11\mathrm{x} - 9\))
The Bottom Line:
This problem tests careful attention to signs and systematic organization. The key challenge is correctly handling the negative sign distribution while maintaining accuracy through multiple algebraic steps.