\(\mathrm{g(x) = |x - 2| + 3}\)Which table gives three values of x and their corresponding values of g(x) for...
GMAT Advanced Math : (Adv_Math) Questions
Which table gives three values of x and their corresponding values of g(x) for the given function g?
(A)
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 1 |
| 2 | 5 |
| 4 | 5 |
(B)
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 5 |
(C)
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 7 |
(D)
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | -1 |
| 2 | 3 |
| 4 | 5 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 1 |
| 2 | 5 |
| 4 | 5 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 5 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 7 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | -1 |
| 2 | 3 |
| 4 | 5 |
1. TRANSLATE the function for each x-value
Given: \(\mathrm{g(x) = |x - 2| + 3}\)
We need to find g(x) for x = 0, 2, and 4 by substituting each value into the function.
2. SIMPLIFY each calculation systematically
For x = 0:
- \(\mathrm{g(0) = |0 - 2| + 3}\)
- First compute inside absolute value: \(\mathrm{0 - 2 = -2}\)
- Apply absolute value: \(\mathrm{|-2| = 2}\)
- Add: \(\mathrm{2 + 3 = 5}\)
For x = 2:
- \(\mathrm{g(2) = |2 - 2| + 3}\)
- First compute inside absolute value: \(\mathrm{2 - 2 = 0}\)
- Apply absolute value: \(\mathrm{|0| = 0}\)
- Add: \(\mathrm{0 + 3 = 3}\)
For x = 4:
- \(\mathrm{g(4) = |4 - 2| + 3}\)
- First compute inside absolute value: \(\mathrm{4 - 2 = 2}\)
- Apply absolute value: \(\mathrm{|2| = 2}\)
- Add: \(\mathrm{2 + 3 = 5}\)
3. TRANSLATE results back to table format
The function values are: \(\mathrm{(0,5), (2,3), (4,5)}\), which matches table B.
Answer: B
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY skill: Students confuse the definition of absolute value, thinking that \(\mathrm{|-2| = -2}\) instead of \(\mathrm{|-2| = 2}\).
When they compute \(\mathrm{g(0) = |0 - 2| + 3 = |-2| + 3}\), they incorrectly evaluate \(\mathrm{|-2|}\) as -2, getting \(\mathrm{g(0) = -2 + 3 = 1}\) instead of 5. This may lead them to select Choice A (which shows g(0) = 1).
Second Most Common Error:
Poor order of operations in SIMPLIFY: Students add 3 before taking the absolute value, computing \(\mathrm{|0 - 2 + 3|}\) instead of \(\mathrm{|0 - 2| + 3}\).
For x = 0, they might compute \(\mathrm{|0 - 2 + 3| = |1| = 1}\), getting the wrong value and potentially selecting Choice A.
The Bottom Line:
This problem tests whether students truly understand absolute value as a distance concept (always non-negative) and can maintain proper order of operations when functions contain multiple operations.
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 1 |
| 2 | 5 |
| 4 | 5 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 5 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | 5 |
| 2 | 3 |
| 4 | 7 |
| \(\mathrm{x}\) | \(\mathrm{g(x)}\) |
|---|---|
| 0 | -1 |
| 2 | 3 |
| 4 | 5 |