prismlearning.academy Logo
NEUR
N

Which of the following expressions is equivalent to \((3\mathrm{x}^2\mathrm{y} - 5\mathrm{xy} + 2) - (\mathrm{x}^2\mathrm{y} + 2\mathrm{xy} - 6)\)?

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
MEDIUM
...
...
Notes
Post a Query

Which of the following expressions is equivalent to \((3\mathrm{x}^2\mathrm{y} - 5\mathrm{xy} + 2) - (\mathrm{x}^2\mathrm{y} + 2\mathrm{xy} - 6)\)?

A
\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} - 4\)
B
\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} + 8\)
C
\(2\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\)
D
\(4\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\)
Solution

1. INFER the solution strategy

  • When subtracting polynomials, we distribute the negative sign to every term in the second polynomial
  • Then we combine like terms by adding/subtracting their coefficients

2. SIMPLIFY by distributing the negative sign

  • Original: \((3\mathrm{x}^2\mathrm{y} - 5\mathrm{xy} + 2) - (\mathrm{x}^2\mathrm{y} + 2\mathrm{xy} - 6)\)
  • Distribute the negative: \(3\mathrm{x}^2\mathrm{y} - 5\mathrm{xy} + 2 - \mathrm{x}^2\mathrm{y} - 2\mathrm{xy} + 6\)
  • Notice that \(-(−6)\) becomes \(+6\)

3. SIMPLIFY by grouping like terms

  • Group \(\mathrm{x}^2\mathrm{y}\) terms: \((3\mathrm{x}^2\mathrm{y} - \mathrm{x}^2\mathrm{y})\)
  • Group \(\mathrm{xy}\) terms: \((-5\mathrm{xy} - 2\mathrm{xy})\)
  • Group constants: \((2 + 6)\)

4. SIMPLIFY by combining coefficients

  • \(\mathrm{x}^2\mathrm{y}\) terms: \(3 - 1 = 2\)\(2\mathrm{x}^2\mathrm{y}\)
  • \(\mathrm{xy}\) terms: \(-5 - 2 = -7\)\(-7\mathrm{xy}\)
  • Constants: \(2 + 6 = 8\)

Answer: \(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} + 8\) (Choice B)




Why Students Usually Falter on This Problem


Most Common Error Path:

Weak SIMPLIFY execution: Not properly distributing the negative sign to the constant term

Students correctly distribute the negative to \(\mathrm{x}^2\mathrm{y}\) and \(2\mathrm{xy}\), but forget that \(-(−6) = +6\). They keep it as \(-6\), leading to:

\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} + 2 - 6 = 2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} - 4\)

This leads them to select Choice A (\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} - 4\))


Second Most Common Error:

Weak SIMPLIFY execution: Arithmetic errors when combining the \(\mathrm{xy}\) terms

Students might incorrectly compute \(-5\mathrm{xy} - 2\mathrm{xy}\) as \(-3\mathrm{xy}\) instead of \(-7\mathrm{xy}\), possibly thinking \(-5 + 2 = -3\). This gives:

\(2\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\)

This leads them to select Choice C (\(2\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\))


The Bottom Line:

The key challenge is careful attention to sign changes when distributing the negative, especially with the constant term where a negative times negative becomes positive.

Answer Choices Explained
A
\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} - 4\)
B
\(2\mathrm{x}^2\mathrm{y} - 7\mathrm{xy} + 8\)
C
\(2\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\)
D
\(4\mathrm{x}^2\mathrm{y} - 3\mathrm{xy} + 8\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.