prismlearning.academy Logo
NEUR
N

\((\frac{1}{2}\mathrm{x} + 3) - (\frac{2}{3}\mathrm{x} - 5)\) Which of the following is equivalent to the expression above?...

GMAT Advanced Math : (Adv_Math) Questions

Source: Official
Advanced Math
Equivalent expressions
MEDIUM
...
...
Notes
Post a Query

\((\frac{1}{2}\mathrm{x} + 3) - (\frac{2}{3}\mathrm{x} - 5)\)

Which of the following is equivalent to the expression above?

A
\(-\frac{1}{6}\mathrm{x} + 8\)
B
\(-\frac{1}{6}\mathrm{x} - 2\)
C
\(-\frac{1}{3}\mathrm{x}^2 + \frac{1}{2}\mathrm{x} + 15\)
D
\(-\frac{1}{3}\mathrm{x}^2 - \frac{9}{2}\mathrm{x} - 15\)
Solution

1. TRANSLATE the problem information

  • Given expression: \(\left(\frac{1}{2}\mathrm{x} + 3\right) - \left(\frac{2}{3}\mathrm{x} - 5\right)\)
  • Need to: Simplify to match one of the answer choices

2. INFER the approach

  • Key insight: The minus sign in front of the second expression must be distributed to BOTH terms inside the parentheses
  • Strategy: Distribute first, then combine like terms

3. SIMPLIFY by distributing the minus sign

  • \(\left(\frac{1}{2}\mathrm{x} + 3\right) - \left(\frac{2}{3}\mathrm{x} - 5\right)\)
  • \(= \left(\frac{1}{2}\mathrm{x} + 3\right) - \frac{2}{3}\mathrm{x} + 5\)
  • Note: The -5 becomes +5 when we distribute the negative

4. SIMPLIFY by rearranging and combining like terms

  • \(= \frac{1}{2}\mathrm{x} - \frac{2}{3}\mathrm{x} + 3 + 5\)
  • \(= \left(\frac{1}{2} - \frac{2}{3}\right)\mathrm{x} + 8\)

5. SIMPLIFY the fraction subtraction

  • Find common denominator: \(\frac{1}{2} = \frac{3}{6}\) and \(\frac{2}{3} = \frac{4}{6}\)
  • \(\frac{1}{2} - \frac{2}{3} = \frac{3}{6} - \frac{4}{6} = -\frac{1}{6}\)
  • Final result: \(-\frac{1}{6}\mathrm{x} + 8\)

Answer: A. \(-\frac{1}{6}\mathrm{x} + 8\)




Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY execution: Students fail to distribute the minus sign to both terms in the second expression.

They incorrectly simplify \(\left(\frac{1}{2}\mathrm{x} + 3\right) - \left(\frac{2}{3}\mathrm{x} - 5\right)\) as:
\(\frac{1}{2}\mathrm{x} + 3 - \frac{2}{3}\mathrm{x} - 5 = -\frac{1}{6}\mathrm{x} - 2\)

This may lead them to select Choice B (\(-\frac{1}{6}\mathrm{x} - 2\))

Second Most Common Error:

Poor INFER reasoning: Students misinterpret the subtraction as multiplication.

Instead of subtracting the second expression, they multiply the two expressions together, leading to a quadratic result with x² terms.

This may lead them to select Choice C (\(-\frac{1}{3}\mathrm{x}^2 + \frac{1}{2}\mathrm{x} + 15\)) or Choice D (\(-\frac{1}{3}\mathrm{x}^2 - \frac{9}{2}\mathrm{x} - 15\))

The Bottom Line:

This problem tests whether students understand that subtracting an expression means distributing the negative sign to every term in that expression. The key challenge is remembering that \(-\left(\frac{2}{3}\mathrm{x} - 5\right)\) equals \(-\frac{2}{3}\mathrm{x} + 5\), not \(-\frac{2}{3}\mathrm{x} - 5\).

Answer Choices Explained
A
\(-\frac{1}{6}\mathrm{x} + 8\)
B
\(-\frac{1}{6}\mathrm{x} - 2\)
C
\(-\frac{1}{3}\mathrm{x}^2 + \frac{1}{2}\mathrm{x} + 15\)
D
\(-\frac{1}{3}\mathrm{x}^2 - \frac{9}{2}\mathrm{x} - 15\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.