prismlearning.academy Logo
NEUR
N

Which expression is equivalent to -{12x^5 + 18x^4 - 6x^3}?\(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\)\(3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm...

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
EASY
...
...
Notes
Post a Query
Which expression is equivalent to \(-12\mathrm{x}^5 + 18\mathrm{x}^4 - 6\mathrm{x}^3\)?

  1. \(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\)
  2. \(3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm{x} - 3)\)
  3. \(6\mathrm{x}^2(-2\mathrm{x}^3 + 3\mathrm{x}^2 - 2\mathrm{x})\)
  4. \(-6\mathrm{x}^3(2\mathrm{x}^2 - 3\mathrm{x} - 1)\)
  5. \(12\mathrm{x}^3(-\mathrm{x}^2 + 2\mathrm{x} - \frac{1}{2})\)
A
\(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\)
B
\(3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm{x} - 3)\)
C
\(6\mathrm{x}^2(-2\mathrm{x}^3 + 3\mathrm{x}^2 - 2\mathrm{x})\)
D
\(-6\mathrm{x}^3(2\mathrm{x}^2 - 3\mathrm{x} - 1)\)
E
\(12\mathrm{x}^3(-\mathrm{x}^2 + 2\mathrm{x} - \frac{1}{2})\)
Solution

1. INFER the problem approach

  • Given: \(-12\mathrm{x}^5 + 18\mathrm{x}^4 - 6\mathrm{x}^3\)
  • This is asking for an equivalent expression, and I see a polynomial with multiple terms
  • Key insight: Since all answer choices show factored forms, I need to factor out the greatest common factor (GCF)

2. SIMPLIFY by finding the GCF of coefficients

  • Coefficients are: 12, 18, 6
  • Find GCD: \(12 = 2^2 \times 3\), \(18 = 2 \times 3^2\), \(6 = 2 \times 3\)
  • \(\mathrm{GCD}(12, 18, 6) = 2 \times 3 = 6\)

3. SIMPLIFY by finding the GCF of variable terms

  • Variable terms are: \(\mathrm{x}^5\), \(\mathrm{x}^4\), \(\mathrm{x}^3\)
  • The lowest power of x is \(\mathrm{x}^3\)
  • So GCD of variables = \(\mathrm{x}^3\)

4. SIMPLIFY by factoring out the complete GCF

  • Overall GCF = \(6\mathrm{x}^3\)
  • Factor each term:
    \(-12\mathrm{x}^5 \div 6\mathrm{x}^3 = -2\mathrm{x}^2\)
    \(18\mathrm{x}^4 \div 6\mathrm{x}^3 = 3\mathrm{x}\)
    \(-6\mathrm{x}^3 \div 6\mathrm{x}^3 = -1\)
  • Result: \(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\)

5. SIMPLIFY by verifying the answer

  • Expand: \(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1) = -12\mathrm{x}^5 + 18\mathrm{x}^4 - 6\mathrm{x}^3\)
  • This matches the original expression

Answer: A


Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY skill: Students make sign errors when factoring out the GCF, particularly with the negative terms.

Students might incorrectly calculate \(-6\mathrm{x}^3 \div 6\mathrm{x}^3 = +1\) instead of \(-1\), or mishandle the negative in \(-12\mathrm{x}^5\). This leads them to get \(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} + 1)\) instead of the correct \(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\).

This may lead them to select Choice D \((-6\mathrm{x}^3(2\mathrm{x}^2 - 3\mathrm{x} - 1))\) since it contains the wrong signs, or causes confusion and guessing.

Second Most Common Error:

Poor INFER reasoning: Students don't recognize they need to find the complete GCF and instead factor out only a partial common factor.

For example, they might factor out just \(3\mathrm{x}^3\) instead of \(6\mathrm{x}^3\), leading to \(3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm{x} - 2)\) which isn't among the choices. Or they factor out \(6\mathrm{x}^2\) instead of \(6\mathrm{x}^3\), missing that all terms contain at least \(\mathrm{x}^3\).

This may lead them to select Choice B \((3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm{x} - 3))\) or Choice C \((6\mathrm{x}^2(-2\mathrm{x}^3 + 3\mathrm{x}^2 - 2\mathrm{x}))\).

The Bottom Line:

This problem tests systematic factoring technique and careful attention to signs. Success requires methodically finding the complete GCF and executing the division accurately, especially with negative terms.

Answer Choices Explained
A
\(6\mathrm{x}^3(-2\mathrm{x}^2 + 3\mathrm{x} - 1)\)
B
\(3\mathrm{x}^3(-4\mathrm{x}^2 + 6\mathrm{x} - 3)\)
C
\(6\mathrm{x}^2(-2\mathrm{x}^3 + 3\mathrm{x}^2 - 2\mathrm{x})\)
D
\(-6\mathrm{x}^3(2\mathrm{x}^2 - 3\mathrm{x} - 1)\)
E
\(12\mathrm{x}^3(-\mathrm{x}^2 + 2\mathrm{x} - \frac{1}{2})\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.