prismlearning.academy Logo
NEUR
N

If \(2(3\mathrm{t}^3 - \mathrm{t}^2 + 4) - (5\mathrm{t}^3 + 3\mathrm{t} - 6) + \mathrm{t}^2\) is simplified, which of the following...

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Equivalent expressions
MEDIUM
...
...
Notes
Post a Query

If \(2(3\mathrm{t}^3 - \mathrm{t}^2 + 4) - (5\mathrm{t}^3 + 3\mathrm{t} - 6) + \mathrm{t}^2\) is simplified, which of the following expressions is equivalent?

  1. \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 14\)
  2. \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 10\)
  3. \(\mathrm{t}^3 - \mathrm{t}^2 + 3\mathrm{t} + 14\)
  4. \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 2\)
A
\(\mathrm{t^3 - t^2 - 3t + 14}\)
B
\(\mathrm{t^3 - t^2 - 3t + 10}\)
C
\(\mathrm{t^3 - t^2 + 3t + 14}\)
D
\(\mathrm{t^3 - t^2 - 3t + 2}\)
Solution

1. SIMPLIFY by distributing coefficients

  • First, distribute the 2 across the first parentheses:
    • \(2(3\mathrm{t}^3 − \mathrm{t}^2 + 4) = 6\mathrm{t}^3 − 2\mathrm{t}^2 + 8\)
  • Next, distribute the negative sign across the second parentheses:
    • \(−(5\mathrm{t}^3 + 3\mathrm{t} − 6) = −5\mathrm{t}^3 − 3\mathrm{t} + 6\)
    • Remember: the negative flips ALL signs inside

2. SIMPLIFY by rewriting the complete expression

  • Now we have: \(6\mathrm{t}^3 − 2\mathrm{t}^2 + 8 − 5\mathrm{t}^3 − 3\mathrm{t} + 6 + \mathrm{t}^2\)

3. SIMPLIFY by combining like terms systematically

  • Group terms by degree (highest to lowest):
    • Cubic terms \((\mathrm{t}^3)\): \(6\mathrm{t}^3 − 5\mathrm{t}^3 = \mathrm{t}^3\)
    • Quadratic terms \((\mathrm{t}^2)\): \(−2\mathrm{t}^2 + \mathrm{t}^2 = −\mathrm{t}^2\)
    • Linear terms \((\mathrm{t})\): \(−3\mathrm{t}\)
    • Constant terms: \(8 + 6 = 14\)
  • Final result: \(\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 14\)

Answer: A




Why Students Usually Falter on This Problem


Most Common Error Path:

Weak SIMPLIFY execution with negative distribution: Students often struggle with distributing the negative sign correctly, forgetting to change the sign of every term inside the parentheses.

For example, they might write \(−(5\mathrm{t}^3 + 3\mathrm{t} − 6) = −5\mathrm{t}^3 + 3\mathrm{t} − 6\) (forgetting to flip the sign of the \(3\mathrm{t}\) term). This error would give them a final result of \(\mathrm{t}^3 − \mathrm{t}^2 + 3\mathrm{t} + 14\), leading them to select Choice C.


Second Most Common Error:

Poor SIMPLIFY organization when combining like terms: Students may incorrectly combine unlike terms or make arithmetic errors when adding/subtracting coefficients.

A common mistake is miscalculating the constant terms \((8 + 6)\) or the quadratic terms \((−2\mathrm{t}^2 + \mathrm{t}^2)\), which could lead them to Choice B \((\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 10)\) or Choice D \((\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 2)\).


The Bottom Line:

This problem tests careful execution of fundamental algebraic operations. Success requires methodical attention to signs during distribution and systematic organization when combining like terms.

Answer Choices Explained
A
\(\mathrm{t^3 - t^2 - 3t + 14}\)
B
\(\mathrm{t^3 - t^2 - 3t + 10}\)
C
\(\mathrm{t^3 - t^2 + 3t + 14}\)
D
\(\mathrm{t^3 - t^2 - 3t + 2}\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.