If \(2(3\mathrm{t}^3 - \mathrm{t}^2 + 4) - (5\mathrm{t}^3 + 3\mathrm{t} - 6) + \mathrm{t}^2\) is simplified, which of the following...
GMAT Advanced Math : (Adv_Math) Questions
If \(2(3\mathrm{t}^3 - \mathrm{t}^2 + 4) - (5\mathrm{t}^3 + 3\mathrm{t} - 6) + \mathrm{t}^2\) is simplified, which of the following expressions is equivalent?
- \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 14\)
- \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 10\)
- \(\mathrm{t}^3 - \mathrm{t}^2 + 3\mathrm{t} + 14\)
- \(\mathrm{t}^3 - \mathrm{t}^2 - 3\mathrm{t} + 2\)
1. SIMPLIFY by distributing coefficients
- First, distribute the 2 across the first parentheses:
- \(2(3\mathrm{t}^3 − \mathrm{t}^2 + 4) = 6\mathrm{t}^3 − 2\mathrm{t}^2 + 8\)
- Next, distribute the negative sign across the second parentheses:
- \(−(5\mathrm{t}^3 + 3\mathrm{t} − 6) = −5\mathrm{t}^3 − 3\mathrm{t} + 6\)
- Remember: the negative flips ALL signs inside
2. SIMPLIFY by rewriting the complete expression
- Now we have: \(6\mathrm{t}^3 − 2\mathrm{t}^2 + 8 − 5\mathrm{t}^3 − 3\mathrm{t} + 6 + \mathrm{t}^2\)
3. SIMPLIFY by combining like terms systematically
- Group terms by degree (highest to lowest):
- Cubic terms \((\mathrm{t}^3)\): \(6\mathrm{t}^3 − 5\mathrm{t}^3 = \mathrm{t}^3\)
- Quadratic terms \((\mathrm{t}^2)\): \(−2\mathrm{t}^2 + \mathrm{t}^2 = −\mathrm{t}^2\)
- Linear terms \((\mathrm{t})\): \(−3\mathrm{t}\)
- Constant terms: \(8 + 6 = 14\)
- Final result: \(\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 14\)
Answer: A
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution with negative distribution: Students often struggle with distributing the negative sign correctly, forgetting to change the sign of every term inside the parentheses.
For example, they might write \(−(5\mathrm{t}^3 + 3\mathrm{t} − 6) = −5\mathrm{t}^3 + 3\mathrm{t} − 6\) (forgetting to flip the sign of the \(3\mathrm{t}\) term). This error would give them a final result of \(\mathrm{t}^3 − \mathrm{t}^2 + 3\mathrm{t} + 14\), leading them to select Choice C.
Second Most Common Error:
Poor SIMPLIFY organization when combining like terms: Students may incorrectly combine unlike terms or make arithmetic errors when adding/subtracting coefficients.
A common mistake is miscalculating the constant terms \((8 + 6)\) or the quadratic terms \((−2\mathrm{t}^2 + \mathrm{t}^2)\), which could lead them to Choice B \((\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 10)\) or Choice D \((\mathrm{t}^3 − \mathrm{t}^2 − 3\mathrm{t} + 2)\).
The Bottom Line:
This problem tests careful execution of fundamental algebraic operations. Success requires methodical attention to signs during distribution and systematic organization when combining like terms.