prismlearning.academy Logo
NEUR
N

Question:Let p and q be real numbers. If (t - 4)/3 = 3p + q, which equation correctly expresses t...

GMAT Advanced Math : (Adv_Math) Questions

Source: Prism
Advanced Math
Nonlinear equations in 1 variable
EASY
...
...
Notes
Post a Query
Question:

Let p and q be real numbers. If \(\frac{\mathrm{t - 4}}{3} = 3\mathrm{p} + \mathrm{q}\), which equation correctly expresses t in terms of p and q?


  1. \(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} - 4\)
  2. \(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} + 4\)
  3. \(\mathrm{t} = \frac{3\mathrm{p} + \mathrm{q}}{3} + 4\)
  4. \(\mathrm{t} = 3\mathrm{p} + \mathrm{q} + 4\)
  5. \(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} + 12\)
A
\(\mathrm{t = 9p + 3q - 4}\)
B
\(\mathrm{t = 9p + 3q + 4}\)
C
\(\mathrm{t = \frac{3p + q}{3} + 4}\)
D
\(\mathrm{t = 3p + q + 4}\)
E
\(\mathrm{t = 9p + 3q + 12}\)
Solution

1. TRANSLATE the problem setup

  • Given equation: \(\frac{\mathrm{t - 4}}{3} = 3\mathrm{p} + \mathrm{q}\)
  • Goal: Express \(\mathrm{t}\) in terms of \(\mathrm{p}\) and \(\mathrm{q}\)

2. SIMPLIFY by eliminating the fraction

  • Multiply both sides by 3 to clear the denominator:
    \(3 \times \frac{\mathrm{t - 4}}{3} = 3 \times (3\mathrm{p} + \mathrm{q})\)
  • Left side: \(\mathrm{t - 4}\)
  • Right side: \(9\mathrm{p} + 3\mathrm{q}\) (using distributive property)
  • Result: \(\mathrm{t - 4} = 9\mathrm{p} + 3\mathrm{q}\)

3. SIMPLIFY to isolate t completely

  • Add 4 to both sides:
    \(\mathrm{t - 4 + 4} = 9\mathrm{p} + 3\mathrm{q} + 4\)
  • Final result: \(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} + 4\)

Answer: B (\(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} + 4\))




Why Students Usually Falter on This Problem

Most Common Error Path:

Weak SIMPLIFY skill: Students make distribution errors when multiplying \(3(3\mathrm{p} + \mathrm{q})\), getting \(3\mathrm{p} + 3\mathrm{q}\) instead of \(9\mathrm{p} + 3\mathrm{q}\).

This incorrect calculation gives \(\mathrm{t} = 3\mathrm{p} + 3\mathrm{q} + 4\), but since \(3\mathrm{p} + 3\mathrm{q} \neq 3\mathrm{p} + \mathrm{q}\), students may try to "fix" this by removing the +4, leading them to select Choice D (\(\mathrm{t} = 3\mathrm{p} + \mathrm{q} + 4\)).

Second Most Common Error:

Incomplete SIMPLIFY execution: Students correctly find \(\mathrm{t - 4} = 9\mathrm{p} + 3\mathrm{q}\) but forget the final step of adding 4 to both sides.

They incorrectly think this means \(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} - 4\), leading them to select Choice A (\(\mathrm{t} = 9\mathrm{p} + 3\mathrm{q} - 4\)).

The Bottom Line:

This problem tests systematic algebraic manipulation skills. Success requires careful attention to distributing coefficients and completing all steps to fully isolate the target variable.

Answer Choices Explained
A
\(\mathrm{t = 9p + 3q - 4}\)
B
\(\mathrm{t = 9p + 3q + 4}\)
C
\(\mathrm{t = \frac{3p + q}{3} + 4}\)
D
\(\mathrm{t = 3p + q + 4}\)
E
\(\mathrm{t = 9p + 3q + 12}\)
Rate this Solution
Tell us what you think about this solution
...
...
Forum Discussions
Start a new discussion
Post
Load More
Similar Questions
Finding similar questions...
Previous Attempts
Loading attempts...
Similar Questions
Finding similar questions...
Parallel Question Generator
Create AI-generated questions with similar patterns to master this question type.