Which of the following is equivalent to the sum of \(\mathrm{x(2x^2 + 3x)}\) and 5x^3 + 4x^2?
GMAT Advanced Math : (Adv_Math) Questions
Which of the following is equivalent to the sum of \(\mathrm{x(2x^2 + 3x)}\) and \(\mathrm{5x^3 + 4x^2}\)?
\(7\mathrm{x}^3 + 4\mathrm{x}^2 + 3\mathrm{x}\)
\(2\mathrm{x}^4 + 8\mathrm{x}^3 + 4\mathrm{x}^2\)
\(7\mathrm{x}^3 + 7\mathrm{x}^2\)
\(5\mathrm{x}^3 + 6\mathrm{x}^2 + 3\mathrm{x}\)
1. INFER the approach needed
- This problem requires adding two polynomial expressions
- But first expression has a factor to distribute: \(\mathrm{x(2x^2 + 3x)}\)
- Strategy: Distribute first, then add the results
2. SIMPLIFY by distributing the x
- Distribute: \(\mathrm{x(2x^2 + 3x) = x \cdot 2x^2 + x \cdot 3x}\)
- Apply exponent rule: \(\mathrm{x \cdot x^2 = x^3}\)
- Result: \(\mathrm{x(2x^2 + 3x) = 2x^3 + 3x^2}\)
3. SIMPLIFY by adding the expressions
- Now add: \(\mathrm{(2x^3 + 3x^2) + (5x^3 + 4x^2)}\)
- Remove parentheses: \(\mathrm{2x^3 + 3x^2 + 5x^3 + 4x^2}\)
4. SIMPLIFY by combining like terms
- Combine x³ terms: \(\mathrm{2x^3 + 5x^3 = 7x^3}\)
- Combine x² terms: \(\mathrm{3x^2 + 4x^2 = 7x^2}\)
- Final result: \(\mathrm{7x^3 + 7x^2}\)
Answer: C (\(\mathrm{7x^3 + 7x^2}\))
Why Students Usually Falter on This Problem
Most Common Error Path:
Weak SIMPLIFY execution during distribution: Students incorrectly distribute \(\mathrm{x(2x^2 + 3x)}\), often getting \(\mathrm{2x^3 + 3x}\) instead of \(\mathrm{2x^3 + 3x^2}\).
They might think: "x times 3x equals 3x" instead of recognizing that \(\mathrm{x \cdot 3x = 3x^2}\).
When they continue with \(\mathrm{(2x^3 + 3x) + (5x^3 + 4x^2)}\) and combine like terms, they get \(\mathrm{7x^3 + 4x^2 + 3x}\).
This leads them to select Choice A (\(\mathrm{7x^3 + 4x^2 + 3x}\)).
The Bottom Line:
This problem tests whether students can correctly apply the distributive property with polynomial terms, particularly remembering that \(\mathrm{x \cdot x^n = x^{n+1}}\). The distribution step is where most errors occur, and these errors carry through to produce a plausible but incorrect final answer.
\(7\mathrm{x}^3 + 4\mathrm{x}^2 + 3\mathrm{x}\)
\(2\mathrm{x}^4 + 8\mathrm{x}^3 + 4\mathrm{x}^2\)
\(7\mathrm{x}^3 + 7\mathrm{x}^2\)
\(5\mathrm{x}^3 + 6\mathrm{x}^2 + 3\mathrm{x}\)